Every Module Is an Inverse Limit of Injectives
نویسنده
چکیده
It is shown that any left module A over a ring R can be written as the intersection of a downward directed system of injective submodules of an injective module; equivalently, as an inverse limit of one-to-one homomorphisms of injectives. If R is left Noetherian, A can also be written as the inverse limit of a system of surjective homomorphisms of injectives. Some questions are raised. The flat modules over a ring are precisely the direct limits of projective modules [11] [6] [10, Theorem 2.4.34]. Which modules are, dually, inverse limits of injectives? I sketched the answer in [1], but in view of the limited distribution of that item, it seems worthwhile to make the result more widely available. The construction from [1] is Theorem 2 below; the connecting maps there are inclusions. In Theorem 4, we shall see that the connecting maps can, alternatively, be taken to be onto if R is Noetherian on the appropriate side. In §2 we ask some questions, in §3 we take some steps toward answering one of them, and in §4 we note what the proofs of our results tell us when applied to not necessarily injective modules. Throughout, “ring” means associative ring with unit, and modules are unital. I am indebted to Pace Nielsen for pointing out the need to assume κ regular in Lemma 1, and to the referee for some useful suggestions.
منابع مشابه
Module cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
متن کاملA KIND OF F-INVERSE SPLIT MODULES
Let M be a right module over a ring R. In this manuscript, we shall study on a special case of F-inverse split modules where F is a fully invariant submodule of M introduced in [12]. We say M is Z 2(M)-inverse split provided f^(-1)(Z2(M)) is a direct summand of M for each endomorphism f of M. We prove that M is Z2(M)-inverse split if and only if M is a direct...
متن کاملModule approximate amenability of Banach algebras
In the present paper, the concepts of module (uniform) approximate amenability and contractibility of Banach algebras that are modules over another Banach algebra, are introduced. The general theory is developed and some hereditary properties are given. In analogy with the Banach algebraic approximate amenability, it is shown that module approximate amenability and contractibility are the same ...
متن کاملON COMULTIPLICATION AND R-MULTIPLICATION MODULES
We state several conditions under which comultiplication and weak comultiplication modulesare cyclic and study strong comultiplication modules and comultiplication rings. In particular,we will show that every faithful weak comultiplication module having a maximal submoduleover a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplicati...
متن کاملModule amenability and module biprojectivity of θ-Lau product of Banach algebras
In this paper we study the relation between module amenability of $theta$-Lau product $A×_theta B$ and that of Banach algebras $A, B$. We also discuss module biprojectivity of $A×theta B$. As a consequent we will see that for an inverse semigroup $S$, $l^1(S)×_theta l^1(S)$ is module amenable if and only if $S$ is amenable.
متن کامل